As Mr. Weitz used to say….you’re doing the wrong kind of chemistry in here
2.1 Start with atoms (this should be review for you!!!!)

- **Atoms** = the building blocks of all substances
 - Made up of electrons, protons and neutrons

- **Electrons** (e^-) have a negative charge
 - Move around the nucleus

- The **nucleus** contains protons and neutrons
 - **Protons** (p^+) have a positive charge
 - **Neutrons** have no charge
How atoms interact

- **Chemical bond**
 - An attractive force existing between two atoms when their electrons interact

- **Molecule**
 - Two or more atoms joined in chemical bonds

- **Compounds**
 - Molecules consisting of two or more elements whose proportions do not vary
 - *Example*: Water (H₂O)

- **Mixture**
 - Two or more substances that intermingle but do not bond;
 - proportions of each can vary
Types of Bonding

- Ionic Bonding
 - A strong mutual attraction between two oppositely charged ions with a large difference in electronegativity (an electron is not usually transferred)
 - *Example:* NaCl (table salt)
Covalent bonding

- **Covalent bond**
 - Two atoms with similar electronegativity and unpaired electrons sharing a pair of electrons
 - Can be **stronger** than ionic bonds
 - Atoms can share one, two, or three pairs of electrons (single, double, or triple covalent bonds)
Hydrogen Bonds

- **Hydrogen bond**
 - A *weak* attraction between a highly electronegative atom and a hydrogen atom taking part in a separate polar covalent bond
 - Hydrogen bonds do not form molecules and are not “chemical bonds”
 - Hydrogen bonds stabilize the structures of large biological molecules
Chemical vs. Physical Reaction

- Physical – Changes states but can be changed back.
- Chemical – Can’t be changed back to the original substance.
2.2 Water’s Life Giving Properties

- Living organisms are mostly water
 - the chemical reactions of life are carried out in water
 - Water is essential to life because of its unique properties
Properties of Water

- The properties of water are a result of extensive hydrogen bonding with each other
 - Overall, water (H\textsubscript{2}O) has no charge
 - Slightly positive H attracted to slightly negative O end
 - Creates a “sticky” molecule
B Many hydrogen bonds (dashed lines) that form and break rapidly keep water molecules clustered together in liquid water.

C Below 0°C (32°F), the hydrogen bonds hold water molecules rigidly in the three-dimensional lattice of ice. The molecules are less densely packed in ice than in liquid water, so ice floats on water.
Adhesion and Cohesion

- **Cohesion** = hydrogen bonding between like molecules
 - Provides surface tension
 - Draws water up from roots of plants

- **Adhesion** = hydrogen bonding between water and other molecules
 - Capillary action
 - Meniscus
Water’s solvent properties

- **Solvents** dissolve **solute**s creating **solutions**
- Water dissolves ionic compounds and other polar molecules
pH is a measure of the number of hydrogen ions in a solution
- The more hydrogen ions, the lower the pH
- pH 7 is neutral (pure water)
- Most life chemistry occurs around pH 7
- Each number is a 10x increase in H+
Acids and Bases

- **Acids** donate hydrogen ions in a water solution
 - pH below 7

- **Bases** accept hydrogen ions in a water solution
 - pH above 7

- Chemical reactions involving acids and bases are important to homeostasis
2.3 Macromolecules

- Macromolecules
 - “giant molecules” – made of smaller molecules
 - Monomers = small units that are hooked together

- 4 Groups of Macromolecules
 - Carbohydrates
 - Lipids
 - Nucleic Acids
 - Proteins
Carbohydrates

- Monosaccharides = single sugars
 - Glucose, fructose
- Complex Carbohydrates
 - Starches, glycogen, cellulose
- Used in animals to store energy and in plants for structure and energy.

Twitchy consumes large amounts of carbs!
Lipids

- Lipids
 - Fats, oils and waxes
 - Used to store energy and make up membranes.

- Saturated vs. Unsaturated
 - Saturated Fats
 - Fat contains the maximum number of hydrogen atoms
 - Unsaturated
 - Fat w/fewer hydrogen atoms (have more double bonds – kinked)
Proteins

- Proteins
 - Chains of folded Amino Acids
- Jobs of Proteins
 - Chemical reactions, pump molecules in/out of cell, enable cells to move.
- Amino Acids
 - There are over 20 different amino acids
 - These form different combinations, each combo = a different protein
Nucleic Acids

- Chains of nucleotides

Types of Nucleic Acids

- DNA – deoxyribonucleic acid
 - Contains the sugar deoxyribose
 - Double Stranded

- RNA – ribonucleic acid
 - Contains the sugar ribose
 - Single Stranded

Image adapted from: National Human Genome Research Institute.
2.4 Activation Energy & Enzymes

- **Activation Energy**
 - The energy needed to start a chemical reaction

- **Enzymes**
 - Proteins that lower the activation energy (they speed up reactions)
Energy Substrate Complex

- Substrate – a molecule that an enzyme reacts with
- Enzyme–Substrate Complex – Certain enzymes (proteins) can only bind with specific substrates.
2 Types of Energy Changes

- **Endothermic** – Absorbs energy
- **Exothermic** – Releases Energy